

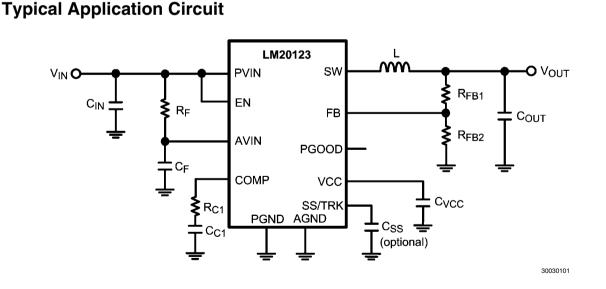
LM20123 3A, 1.5MHz PowerWise[®] Synchronous Buck Regulator

General Description

The LM20123 is a full featured 1.5 MHz synchronous buck regulator capable of delivering up to 3A of continuous output current. The current mode control loop can be compensated to be stable with virtually any type of output capacitor. For most cases, compensating the device only requires two external components, providing maximum flexibility and ease of use. The device is optimized to work over the input voltage range of 2.95V to 5.5V making it suited for a wide variety of low voltage systems.

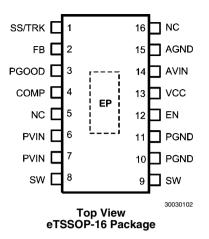
The device features internal over voltage protection (OVP) and over current protection (OCP) circuits for increased system reliability. A precision enable pin and integrated UVLO allows the turn on of the device to be tightly controlled and sequenced. Start-up inrush currents are limited by both an internally fixed and externally adjustable Soft-Start circuit. Fault detection and supply sequencing is possible with the integrated power good circuit.

The LM20123 is designed to work well in multi-rail power supply architectures. The output voltage of the device can be configured to track a higher voltage rail using the SS/TRK pin. If the output of the LM20123 is pre-biased at startup it will not sink current to pull the output low until the internal soft-start ramp exceeds the voltage at the feedback pin.


The LM20123 is offered in a 16-pin eTSSOP package with an exposed pad that can be soldered to the PCB, eliminating the need for bulky heatsinks.

Features

- Input voltage range 2.95V to 5.5V
- Accurate current limit minimizes inductor size
- 96% efficiency with 1.5 MHz switching frequency
- 32 mΩ integrated FET switches
- Starts up into pre-biased loads
- Output voltage tracking
- Peak current mode control
- Adjustable output voltage down to 0.8V
- Adjustable Soft-Start with external capacitor
- Precision enable pin with hysteresis
- Integrated OVP, UVLO, power good and thermal shutdown
- eTSSOP-16 exposed pad package


Applications

- Simple to design, high efficiency point of load regulation from a 5V or 3.3V bus
- High Performance DSPs, FPGAs, ASICs and microprocessors
- Broadband, Networking and Optical Communications Infrastructure

PowerWise[®] is a registered trademark of National Semiconductor Corporation.

Connection Diagram

Ordering Information

Order Number	Package Type	NSC Package Drawing	Package Marking	Supplied As
LM20123MH	eTSSOP-16	MXA16A	20123MH	92 Units of Rail
LM20123MHE				250 Units of Tape and Reel
LM20123MHX				2500 Units of Tape and Reel

Pin Descriptions

Pin #	Name	Description
1	SS/TRK	Soft-Start or Tracking control input. An internal 5 μ A current source charges an external capacitor to set the Soft-Start ramp rate. If driven by a external source less than 800 mV, this pin overrides the internal reference that sets the output voltage. If left open, an internal 1ms Soft-Start ramp is activated.
2	FB	Feedback input to the error amplifier from the regulated output. This pin is connected to the inverting input of the internal transconductance error amplifier. An 800 mV reference connected to the non-inverting input of the error amplifier sets the closed loop regulation voltage at the FB pin.
3	PGOOD	Power good output signal. Open drain output indicating the output voltage is regulating within tolerance. A pull-up resistor of 10 k Ω to 100 k Ω is recommend for most applications.
4	COMP	External compensation pin. Connect a resistor and capacitor to this pin to compensate the device.
5,16	NC	These pins must be connected to GND to ensure proper operation.
6,7	PVIN	Input voltage to the power switches inside the device. These pins should be connected together at the device. A low ESR capacitor should be placed near these pins to stabilize the input voltage.
8,9	SW	Switch pin. The PWM output of the internal power switches.
10,11	PGND	Power ground pin for the internal power switches.
12	EN	Precision enable input for the device. An external voltage divider can be used to set the device turn- on threshold. If not used the EN pin should be connected to PVIN.
13	VCC	Internal 2.7V sub-regulator. This pin should be bypassed with a 1 μ F ceramic capacitor.
14	AVIN	Analog input supply that generates the internal bias. Must be connected to VIN through a low pass RC filter.
15	AGND	Quiet analog ground for the internal bias circuitry.
EP	Exposed Pad	Exposed metal pad on the underside of the package with a weak electrical connection to ground. It is recommended to connect this pad to the PC board ground plane in order to improve heat dissipation.

LM20123

Absolute Maximum Ratings (Note 1)

Voltages from the indicated pins to GND

AVIN, PVIN, EN, PGOOD, SS/

TRK, COMP, FB, SW

Storage Temperature

Junction Temperature

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. Power Dissipation (Note 2) Lead Temperature (Soldering, 10 sec) Minimum ESD Rating (Note 3) 2.6W 260°C LM20123

±2kV

Operating Ratings

PVIN, AVIN to GND2.95V to 5.5VJunction Temperature-40°C to + 125°C

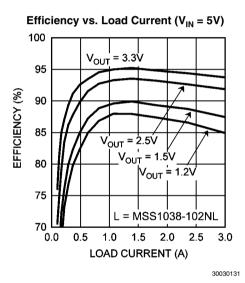
Electrical Characteristics Unless otherwise stated, the following conditions apply: AVIN = PVIN = VIN = 5V. Limits in standard type are for $T_J = 25^{\circ}C$ only, limits in bold face type apply over the junction temperature (T_J) range of -40°C to +125°C. Minimum and Maximum limits are guaranteed through test, design, or statistical correlation. Typical values represent the most likely parametric norm at $T_J = 25^{\circ}C$, and are provided for reference purposes only.

-0.3V to +6V

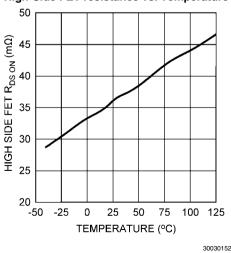
150°C

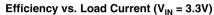
-65°C to 150°C

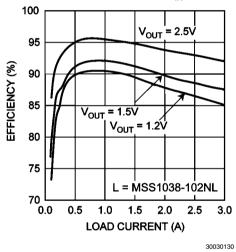
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{FB}	Feedback pin voltage	V _{IN} = 2.95V to 5.5V	0.788	0.8	0.812	V
ΔV _{OUT} /ΔI _{OUT}	Load Regulation	I _{OUT} = 100 mA to 3A		0.08		%/A
I _{CL}	Switch Current Limit Threshold	V _{IN} = 3.3V	4.3	4.8	5.3	Α
R _{DS_ON}	High-Side Switch On Resistance	I _{SW} = 3.5A		36	55	mΩ
R _{DS_ON}	Low-Side Switch On Resistance	I _{SW} = 3.5A		32	52	mΩ
l _Q	Operating Quiescent Current	Non-switching, $V_{FB} = V_{COMP}$		3.5	6	mA
I _{SD}	Shutdown Quiescent current	$V_{EN} = 0V$		90	180	μA
V _{UVLO}	VIN Under Voltage Lockout	Rising V _{IN}	2.45	2.7	2.95	V
V _{UVLO_HYS}	VIN Under Voltage Lockout Hysteresis	Falling V _{IN}		45	100	m∖
V _{VCC}	VCC Voltage	I _{VCC} = 0 μA	2.45	2.7	2.95	V
I _{SS}	Soft-Start Pin Source Current	V _{SS/TRK} = 0V	2	4.5	7	μA
V _{TRACK}	SS/TRK Accuracy, V _{SS} - V _{FB}	$V_{SS/TRK} = 0.4V$	-10	3	15	m∖
scillator	•	•	•			
F _{osc}	Oscillator Frequency		1350	1500	1650	kH
DC _{MAX}	Maximum Duty Cycle	I _{LOAD} = 0A		85		%
T _{ON_TIME}	Minimum On Time			100		ns
T _{CL_BLANK}	Current Sense Blanking Time	After Rising V _{SW}		80		ns
	and Modulator					
I _{FB}	Feedback pin bias current	V _{FB} = 0.8V		1	100	nA
I _{COMP_SRC}	COMP Output Source Current	$V_{FB} = V_{COMP} = 0.6V$	80	100		μA
I _{COMP_SNK}	COMP Output Sink Current	$V_{FB} = 1.0V, V_{COMP} = 0.6V$	80	100		μA
9 _m	Error Amplifier Transconductance	$I_{COMP} = \pm 50 \ \mu A$	450	510	600	μmł
A _{VOL}	Error Amplifier Voltage Gain			2000		V/\
wer Good						
V _{OVP}	Over Voltage Protection Rising Threshold	With respect to V _{FB}	105	108	111	%
V _{OVP_HYS}	Over Voltage Protection Hysteresis			2	3	%
V _{PGTH}	PGOOD Rising Threshold	With respect to V _{FB}	92	94	96	%
V _{PGHYS}	PGOOD Falling Hysteresis	7		2	3	%
T _{PGOOD}	PGOOD deglitch time			16		μs
I _{OL}	PGOOD Low Sink Current	$V_{PGOOD} = 0.4V$	0.6	1		mA
I _{OH}	PGOOD High Leakage Current	$V_{PGOOD} = 5V$	1	5	100	nA

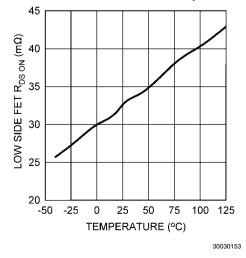

LM20123

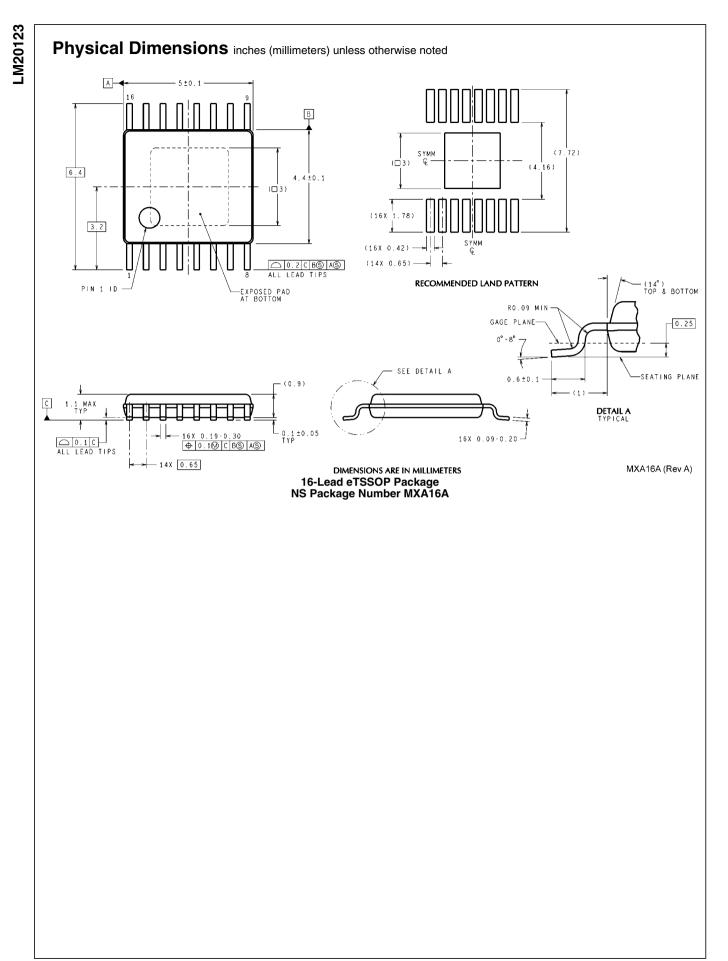
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
_ogic						
V_{IH_EN}	EN Pin Turn on Threshold	V _{EN} Rising	1.08	1.18	1.28	V
V _{EN_HYS}	EN Pin Hysteresis			66		mV
hermal Shutd	own		•			
T _{SD}	Thermal Shutdown			160		°C
T _{SD_HYS}	Thermal Shutdown Hysteresis			10		°C
hermal Resist	tance		•			
θ_{JA}	Junction to Ambient			38		°C/W


Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. **Note 2:** The maximum allowable power dissipation is a function of the maximum junction temperature, $T_{J_{_}MAX}$, the junctions-to-ambient thermal resistance, θ_{JA} , and the ambient temperature, T_{A} . The maximum allowable power dissipation at any ambient temperature is calculated using: $P_{D_{_}MAX} = (T_{J_{_}MAX} - T_{A})/\theta_{JA}$. The maximum power dissipations of 2.6W is determined using $T_{A} = 25^{\circ}$ C, $\theta_{JA} = 38^{\circ}$ C/W, and $T_{J_{_}MAX} = 125^{\circ}$ C.


Note 3: The human body model is a 100 pF capacitor discharged through a 1.5 k Ω resistor to each pin.


Typical Performance Characteristics Unless otherwise specified: $C_{IN} = C_{OUT} = 100 \ \mu\text{F}$, L = 1.0 μH (Coilcraft MSS1038), $V_{IN} = 5V$, $V_{OUT} = 1.2V$, $R_{LOAD} = 1.2\Omega$, $T_A = 25^{\circ}\text{C}$ for efficiency curves, loop gain plots and waveforms, and $T_I = 25^{\circ}\text{C}$ for all others.





Low-Side FET resistance vs. Temperature

